skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Song, Yanli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Abstract LetGbe a linear real reductive Lie group. Orbital integrals define traces on the group algebra ofG. We introduce a construction of higher orbital integrals in the direction of higher cyclic cocycles on the Harish-Chandra Schwartz algebra ofG. We analyze these higher orbital integrals via Fourier transform by expressing them as integrals on the tempered dual ofG. We obtain explicit formulas for the pairing between the higher orbital integrals and theK-theory of the reduced group$$C^{*}$$-algebra, and we discuss their application toK-theory. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract We show, under an orientation hypothesis, that a log symplectic manifold with simple normal crossing singularities has a stable almost complex structure, and hence is Spin$$_c$$. In the compact Hamiltonian case we prove that the index of the Spin$$_c$$ Dirac operator twisted by a prequantum line bundle satisfies a $[Q,R]=0$ theorem. 
    more » « less